Alexandre LangloisAlexandre Langlois - CARTEL research member

Assistant Professor

Contact information

 

 

 

Research program

The main focus of my research program is to better characterise the impact of climate change in northern regions in the context of geohazards. The rise in demand for natural resources coming from northern latitudes has greatly increased the need for energy, infrastructure, development, transport, and resources and services, which are all sensitive to climate change. Thawing is linked to rising temperatures, and there is an urgent need for the development of adaptation approaches for the management of resources and infrastructure in order to protect northern ecosystems and to ensure the economic, social, and cultural well-being of northern communities.

There are three principal aims in my research program:

  1. Characterisation of the current impact of climate change in northern regions and the problems that could lead to the greatest geohazards.
  2. Characterisation of geohazards in the context of climate change predictions following specific scenarios of increasing CO2.
  3. Development of adaptation and development strategies following aim 2 by using geographic information systems (GIS).

Keywords - Cryosphere and climate change; Terrestrial and oceanic studies; Socio-economic and sustainable development issues; Atmospheric and oceanic dynamics; Snow and sea ice; Remote sensing (in situ, aerial, satellite); Geohazards; Modelling and geographic information systems (GIS); Project management; Environmental problems in the Arctic.


Current projects

1. Evaluation and improvement of the representation of snow cover in the Canadian Regional Climate models CRCM4 and CRCM5 over northern Quebec
The main goal of the proposed project is to evaluate and improve the representation of snow cover in the Canadian Regional Climate models CRCM4 and CRCM5 over northern Quebec. Our research activities include an evaluation of the characterisation of important processes related to snow cover in CRCM4 and CRCM5 in northern Quebec by using new in situ databases and remote sensing, developing an improved representation of snow cover, and a sensitivity analysis of the local climate in response to various processes related to snow.
Research partners: Environment Canada, Ouranos, Université de Sherbrooke


2. Sila-illusaq
The goal of this project is to study the interactions between snow, vegetation, permafrost, and climate for subarctic and arctic sites in order to quantitatively understand and predict: (1) the future thermal regime of the permafrost and (2) the future emissions of greenhouse gases by the thawing permafrost.
Research partners: Takuvik, GAME, LGGE, CEN-UL, INRS-ÉTÉ, UQTR, Université de Sherbrooke, McGill University


3. Suivi de la fonte des calottes glaciaires du Nord par télédétection
This project is part of the Carto-Nord Project of Natural Resources Canada whose objective is to complete the topographic coverage of Northern Canada at the 1/50 000 scale. This study is led by the Centre d'information topographique de Sherbrooke (CIT) in collaboration with the Canada Centre for Remote Sensing (CCRS).
Research partners: CIT, Université de Sherbrooke, University of Ottawa, Geological Survey of Canada, Parks Canada, PCSP, Canada Centre for Remote Sensing (CCRS)


4. Collaboration France-Québec
The project is a continuation of the collaboration between the Université de Sherbrooke and the Laboratoire de Glaciologie et Géophysique de l'Environnement de Grenoble, France. The main goal is to support the development of innovative methods for the measurement of snow cover.
Research partners: Université de Sherbrooke, Laboratoire de Glaciologie et Géophysique de l'Environnement (LGGE)-CNRS-Université Joseph Fourier (Grenoble, France), Centre d'Étude de la Neige (Grenoble, France)


5. Suivi des évènements climatiques extrêmes hivernaux dans l'Arctique
Ce projet se concentre sur le développement de méthodes de suivi d'`évènements climatiques extrêmes dans l'Arctique à l'aide de mesures in-situ et satellitaires. En particulier le développement de méthodes micro-ondes est utilisé pour le suivi de la pluie-sur-neige, vagues de chaleur et précipitations extrêmes.
Équipe : Environnement Canada, LGGE, CEN-UL, Université de Sherbrooke


6. Suivi et modélisation de la fonte du couvert nival en période d'hiver dans l'Arctique
Le but principal du projet est de mieux comprendre l'impact de ces évènements hivernaux de fonte sur les propriétés de l'interface air-neige-sol/glace dans le but de développer des méthodes semi-empiriques de détection de fonte hivernale par satellite et de modéliser le couvert nival dans de telles conditions. Les efforts se concentreront sur deux fronts : 1) la toundra au Nunavik et 2) la calotte glaciaire de Barnes située en Terre-de-Baffin au Nunavut.
Équipe : Clark University, UQTR, LGGE, Université de Sherbrooke


7. Amélioration de la prédiction du risque d'avalanche : mesures et modélisations
e projet a pour but d'améliorer la modélisation du risque issue du modèle SNOWPACK à l'aide de mesures de terrain. Des instruments à la fine pointe de la technologie développés au cours des 5 dernières années apportent une information essentielle à la réalisation du projet.
Équipe : Parks Canada, University of Calgary, SLF-Davos, Centre d'avalanche de la Haute Gaspésie, Université de Sherbrooke


8. Évaluation des conditions d'accès à la nourriture du Caribou Peary dans l'archipel Arctique Canadien par modélisation
Les changements climatiques apportent des changements importants dans l'état de la neige, affectant du même coup les conditions d'accès à la nourriture de certaines espèces dont le Caribou Peary. Le projet vise donc à modéliser l'état du couvert nival passé, présent et futur pour déterminer l'évolution spatio-temporelle des conditions d'accès à la nourriture.
Équipe : Environnement Canada, Université de Sherbrooke


Postdoctoral researchers and graduate student

Current research highlights

The first scientific field trip during winter to the summit of the Barnes ice cap, Baffin Island, Nunavut (YouTube video)

 

Other activities

  • Secretary-Treasurer of the Association Québécoise de Télédétection (AQT)
  • Membre du Comité conseil étudiant du Département de Géomatique Appliquée
  • Président du Comité des Études Nordiques de l'Université de Sherbrooke pour le Programme de formation scientifique dans le Nord
  • President, Eastern Snow Conference
  • Éditeur, Publications de conférence, Eastern Snow Conference
  • Member of the Centre d'études Nordique


Publications

Submitted

  • Dupont, F., Picard, G., Royer, A., Fily, M., Langlois, A., Roy, A., and Champollion, N. 2012. Modeling the microwave emission of bubbly ice; Applications to blue ice and superimposed ice in the Antarctic and Arctic, IEEE Transactions on Geosciences and Remote Sensing, Submitted, TGRS_2012-01104.
  • Langlois, A., Bergeron, J., Brown, R., Royer, A., Harvey, R., Roy, A., Wang, L. and Thériault, N. 2013. Evaluation of CLASS 2.7 and 3.5 simulations of snow cover from the Canadian Regional Climate Model (CRCM4) over Québec, Canada. Journal of Hydrometeorology, Submitted April 2013, AMSJHM-S-1300073.
  • Montpetit B., Royer, A., Roy, A., Langlois, A. and Derksen, C. 2013. Snow microwave emission modeling of ice lenses within the snowpack using the Microwave Emission Model for Layered Snowpacks (MEMLS), IEEE TGRS, 51, 4705-4717.
  • Rutter,N., Sandells, M., Derksen, C., Toose, P., Royer, A., Montpetit, B., Langlois, A., Lemmetyinen, J., and Pulliainen, J. 2013. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modeling. Journal of Geophysical Research, Submitted, November 2013.
  • Wang, L., MacKay, M., Brown, R., Harvey, R., and Langlois, A. 2013. Application of satellite data for evaluating the cold climate performance of the Canadian Regional Climate model over Québec, Canada. Journal of Hydrometeorology, Submitted, May 2013, AMSJHM-0331708.

 

Published


Notice: Undefined variable: pub_text in /home/cartel.00340/public_html/parse_pubs_fonction.php on line 4

Notice: Undefined variable: person_pubs in /home/cartel.00340/public_html/parse_pubs_fonction.php on line 52


    2013

  • Roy, A., Royer, A., Montpetit, B., Bartlett, P.A., and Langlois, A. (2013) Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS). The Cryosphere, 7, 961-975, doi:10.5194/tc-7-961-2013

  • 2012

  • Derksen, C., Smith, S. L., Sharp, M., Brown, L., Howell, S., Copland, L., Muelle, D. R., Gauthier, Y., Fletcher, C., Tivy, A., Bernier, M., Bourgeois, J., Brown, R., Burn, C. R., Duguay, C., Kushner, P., Langlois, A., Lewkowicz, A. G., Royer, A. and Walker, A. 2012. Varianility and change in the canadian cryosphere, Climatic Change, DOI: 10.1007/s10584-012-0470-0.
  • Derksen, C., Toose, P., Lemmetyinen, J., Pulliainen, J., Langlois, A., Rutter, N. and Fuller, M.C. 2012. Evaluation of passive microwave brightness temperature simulations and snow water equivalent retrievals through a winter season, Remote Sensing of Environment, 117, 236-248.
  • Dupont, F., Royer, A., Langlois, A., Gressent, A., Picard, G., Fily, M., Cliche, P. and Chum, M. (2012), Monitoring the melt season length of the Barnes Ice Cap over the 1979–2010 period using active and passive microwave remote sensing data. Hydrol. Process.. doi: 10.1002/hyp.9382 pdf
  • Dupont, F., Picard, G., Royer, A., Fily, M., Langlois, A., Roy, A., and Champollion, N. 2012. Modeling the microwave emission of bubbly ice; Applications to blue ice and superimposed ice in the Antarctic and Arctic, IEEE Transactions on Geosciences and Remote Sensing, Submitted, TGRS_2012-01104.
  • Langlois, A., A. Royer, C. Derksen, B. Montpetit, F. Dupont, and K. Goïta (2012), Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals, Water Resour. Res., 48, W12524, doi:10.1029/2012WR012133. Kohn and Roy 2012
  • Montpetit B., Royer, A., Roy, A., Langlois, A. and Derksen, C. 2012. Snow microwave emission modeling of ice lenses within the snowpack using the Microwave Emission Model for Layered Snowpacks (MEMLS), Hydrological Processes, Submitted March 2012.
  • Montpetit B., Royer A., Langlois A., Cliche P., Roy A., Champollion N., Picard G., Domine F., Obbard R. 2012. New short wave infrared albedo measurements for snow specific surface area retrieval, Journal of Glaciology, vol. 58, no. 211, doi: 10.3189/2012JoG11j248. Mora2012
  • Roy, A., Picard, G., Royer, A., Montpetit, B., Dupont, F., Langlois, A., and Derksen, C. 2012. Snow brightness temperature simulations driven by measurements of the specific surface area of snow grains, IEEE Transactions on Geoscience and Remote Sensing, Accepted, TGRS-2012-00591.
  • Roy, A., Royer, A., Montpetit, B, Bartlett, P.A, Langlois, A., 2012. Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS), The Cryosphere, TC-2012-189.
  • Roy, A., Royer, A., Wigneron, J.-P., Langlois, A., Bergeron, J., Cliche, P. 2012. A simple parameterization for a boreal forest radiative transfer model at microwave frequencies. Remote Sensing of Environment, 124, doi: 10.1016/j.rse.2012.05.020.
  • Rutter, N., Sandells, M., Derksen, C., Royer, A., Lemmetyinen, J., Toose, P., Montpetit, B., Langlois, A., and Pulliainen, J. 2012. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modelling, Journal of Geophysical Research, submitted, September 27th 2012.

  • 2011

  • Brucker, L., Royer, A., Picard, G., Langlois, A. and Fily, M. Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution-emission model. Remote Sensing of Environment. 115, pp. 1966-1977. doi:10.1016/j.rse.2011.03.019 pdf
  • Langlois, A., Royer, A., Dupont, F., Roy, A., Goïta, K. and Picard, G. (2011) Improved corrections of forest effects on passive microwave satellite remote sensing of snow over boreal and subarctic regions. IEEE Transactions on Geoscience and Remote Sensing, Vol. 49(10 PART 2), art. no. 5771614, pp. 3824-3837. pdf

  • 2010

  • Langlois, A., Royer A. and Goïta, K. (2010). Analysis of simulated and spaceborne passive microwave brightness temperatures using in-situ measurements of snow and vegetation properties, Can. J. Remote Sensing, 36, S135–S148. pdf
  • Langlois, A., Royer, A., Montpetit, B., Picard, G., Brucker, L., Arnaud L., Harvey-Collard, P., Fily, M. and Goïta, K. (2010) On the relationship between snow grain morphology and in-situ near infrared calibrated reflectance photographs. Cold Regions Science and Technology, 61, pp. 34-42. doi:10.1016/j.coldregions.2010.01.004 pdf
  • Scharien, R.K., Geldsetzer, T., Barber, D.G., Yackel, J.J., and Langlois, A. (2010) Physical, dielectric, and C-band microwave scattering properties of first-year sea ice during advanced melt. Journal of Geophysical Research, Vol. 115, C12026, 16 pp., doi:10.1029/2010JC006257. pdf

  • 2009

  • Geldsetzer, T., Langlois, A. and Yackel, J.  (2009)  Dielectric properties of brine-wetted snow on first-year sea ice. Cold Regions Science and Technology, 58, 47-56. pdf
  • Isleifson, D., Langlois, A., Barber, D.G. and Shafai, L.  2009.  C-Band Scatterometer Measurements of Multiyear Sea Ice Before Fall Freeze-Up in the Canadian Arctic.  IEEE Transactions on Geoscience and Remote Sensing. 47(6), 1651-1661. pdf
  • Langlois, A., Brucker, L., Kohn, J., Royer, A., Derksen, C., Cliche, P., Picard, G., Willemet, J.M., and Fily, M. (2009). Simulation of Snow Water Equivalent (SWE) using Thermodynamic Snow Models in Québec, Canada. Journal of Hydrometeorology, 10(6), 1447-1462 DOI: 10.1175/2009JHM1154.1 pdf

  • 2008

  • Galley, R.J., Trachtenberg, M., Langlois, A., Barber D.G. and Shafai, L. (2008) Observations of geophysical and dielectric properties and ground penetrating radar signatures for discrimination of snow, sea ice and freshwater ice thickness. Cold Regions Science and Technology, 57, 29-38. pdf
  • Langlois, A. and Barber, D.G. 2008. Advances in seasonal snow water equivalent (SWE) retrieval using in situ passive microwave measurements over first-year sea ice. International Journal of Remote Sensing, 29:16, 4781-4802. pdf
  • Langlois, A., Fisico, T., Barber, D.G. and Papakyriakou, T.N. (2008) Response of snow thermophysical processes to the passage of a polar low-pressure system and its impact on in situ passive microwave radiometry: A case study. Journal of Geophysical Research, 113, C03S04, doi:10.1029/2007JC004197. pdf
  • Langlois, A., Scharien, R., Geldsetzer T., Iacozza J., Barber D.G. and Yackel J. (2008) Estimation of Snow Water Equivalent over First-Year Sea Ice using AMSR-E and Surface Observations. Remote Sensing of Environment, 112, 3656-3667. pdf

  • 2007

  • Hwang, B.J., Langlois, A., Barber, D.G. and Papakyriakou, T.N. 2006. On detection of the thermophysical state of landfast first-year sea ice using in-situ microwave emission during spring melt. Remote Sensing of Environment, 111, 148-159, doi:10.1016/j.rse.2007.02.033. pdf
  • Langlois, A. and Barber, D.G. (2007) Passive Microwave Remote Sensing of Seasonal Snow Covered Sea Ice. Progress in Physical Geography, 31(6), 539-573, doi: 10.1177/0309133307087082. pdf
  • Langlois, A., Barber, D.G., and Hwang, B.J. 2007.Development of a winter snow water equivalent algorithm using in situ passive microwave radiometry over snow-covered first-year sea ice. Remote Sensing of Environment, vol. 106/1, p.75-88, doi:10.1016/j.rse.2006.07.018. pdf
  • Langlois, A., Mundy, C.J., Barber, D.G. 2007. On the winter evolution of snow thermophysical properties over land-fast first-year sea ice. Hydrological Processes, Vol. 21, 6, p. 705-716, doi: 10.1002/hyp.6407. pdf

  • 2004

  • Langlois, A., A. Royer, E. Fillol, A. Frigon and R. Laprise (2004). Evaluation of the snow cover variation in the Canadian Regional Climate Model over eastern Canada using passive microwave satellite data. Hydrological Processes, no 18, p. 1127-1138. DOI: 10.1002/hyp.5514 pdf