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Abstract

The root-mean-square (rms) differences between the Canadian air quality model GEM-AQ and measurements for

intensive and extensive optical variables (aerosol optical depth or AOD and Ångström exponent or a) were investigated

using data from the July 2002 Québec smoke event. In order to quantify regional differences between model and

measurements we employed a three component analysis of rms differences. The behaviour of the two absolute amplitude

rms components of AOD (difference of the means and the difference of the standard deviations) enabled us to infer

emission properties which would otherwise have been masked by the larger ‘anti-correlation’ component. We found the

inferred emission fluxes to be significantly higher than the original geostationary, satellite-derived FLAMBÉ (fire locating

and modelling of burning emissions) emissions flux estimates employed as inputs to the simulations. The model captured

the regional decrease of the intensive a exponent (increase of particle size with trajectory time), while the agreement with

the extensive AOD parameter was marginal but clearly dependent on the nature of the spatio-temporal statistical tools

employed to characterize model performance. In establishing the a versus trajectory time trend, the modelled AOD data

was filtered in the same way as the measured data (very large AODs are eliminated). This processing of modelled results

was deemed necessary in order to render the a results comparable with the measurements; in the latter case it was difficult,

if not impossible, to discriminate between measured a trends due to instrumental artifacts (non-linearities at low signal

strength) versus trends due to coagulative effects.
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1. Introduction

Model evaluation is a multi-disciplinary research
activity which ranges from qualitative ‘eyeball’
comparisons to sophisticated spatio-temporal
.
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statistical analyses. It is a somewhat subjective
endeavour given the different criteria and objectives
of the different communities with direct or indirect
interests in model evaluation. Difficulties include
the gap between model output parameters and
available measurement data, the characterization of
model uncertainty, the introduction of measurement
bias due to data reduction techniques, and a general
culture of poor interaction and communication
between the separate disciplines involved in the
evaluation process (Berk et al., 2002).

All-encompassing and popular statistical para-
meters such as the root mean square (rms)
difference between model and measurement, while
arguably an advance on eyeball comparisons, can be
so phenomenological or top-down as to be of
limited value (Berk et al., 2001). The correlation
coefficient between ensembles of modelled and
measured data (across time and/or space) can be
instructive but is often given in an incomplete
context in the sense of how its value impacts on
the error budget for a given model parameter.
A graphical tool such as a Taylor diagram (Taylor,
2001) divides the rms error into its general
component contributions related to correlative and
amplitude differences but does not show all
contributions at once, nor the sign and absolute
magnitude of these contributions. A spatio-tempor-
al evaluation of differences between model and
measurements is certainly the most fundamental
approach to model evaluation. However, aerosol
optical data is arguably the most temporally and
spatially sparse atmospheric data available and
typically does not lend itself well to data intensive
processes such as spatial or temporal auto-correla-
tion techniques. A further complication is related to
retrieval as well as statistical biases; high AODs in
particular are very sparse.

The literature on model evaluation in terms of
aerosol optical parameters is largely concentrated
on generic single-wavelength total aerosol optical
depth (AOD) comparisons, while the interpretation
of these comparisons is largely of a qualitative or
semi-qualitative nature. There is, moreover, mini-
mal literature on the evaluation of model perfor-
mance in terms of both extensive optical properties,
such as AOD, and intensive, size and/or type
dependent optical properties, such as the Ångström
exponent (a). Lesins and Lohmann (2005) did, for
example, present a study on the use of AERONET
and MODIS fine mode fractions as prescribed
inputs to a GCM; this process provided an indirect
evaluation of an intensive variable (fine mode
fraction) in terms of how its variability influenced
the modelled versus measured agreement of (ex-
tensive) AOD. Finally, we would note that there has
been a tendency to use the measured optical
parameters as is with little analysis of possible
environmental or instrumental biases such as the
presence of thin homogeneous cloud or radiometric
artifacts.

The principal motivation for the current work
was to evaluate the performance of the GEM-AQ
air quality model (the Canadian air quality model
described below) within a context of both extensive
and intensive variability. Given the array of choices
and difficulties associated with model evaluation
approaches, we chose to focus our evaluation efforts
on strong-signal events whose aerosol optical
variations were well understood. A natural first
choice was to investigate the numerous Boreal forest
fire smoke events which affect nearly all parts of
Canada each year. This process-level approach
allows one to investigate the behaviour of model
evaluation criteria across significant variations in
both AOD and the Ångström exponent, while
ensuring that cloud contamination and instrumental
artifacts are avoided or at least minimized.

Boreal forest fires emit large amounts of aerosol
particles and trace gases that can be transported as
smoke to distant locations. These smoke events can
have a substantial impact on air quality, visibility
and regional radiative balance. Smoke emissions
from Canadian wildfires have been known to
influence optical measurements as far away as
Europe (Wandinger et al., 2002), or to alter the
photochemical production of ozone in the south-
eastern United States (Wotawa and Trainer, 2000).
The extremely warm and dry summer of 2002
created conditions for widespread wildfire activity
across central and eastern Canada. On July 2 and 3,
thunderstorms sparked more than 85 fires in central
and western Québec. Cloudiness and weak tropo-
spheric winds prevented these fires from intensifying
until July 5 and 6. The smoke from the fanned fires
was transported rapidly and with little dispersion
into southern Québec, central and eastern Ontario,
and north-eastern United States (Colarco et al.,
2004; Taubman et al., 2004; O’Neill et al., 2005;
Pahlow et al., 2005; Sapkota et al., 2005).

Smoke events generally provide strong and
unambiguous fine mode aerosol optical signals.
The Québec smoke event was characterized by
extraordinarily large AODs which yielded clear
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spatio-temporal patterns of aerosol abundance and
which provided an optimal environment for short
term coagulative growth effects. Smoke radiances
are often easy to discriminate from cloud contami-
nated radiances in ground-based and satellite data,
and source emissions are relatively strong and easily
identified. The evaluation of an air quality model in
the presence of an event such as the Québec smoke
event is thus, in numerous ways, an excellent
proving ground for model evaluation strategies as
well as for testing model performance on important
and robust indicators of intensive and extensive
aerosol behaviour.

2. Model and measurements employed

In order to simulate the 2002 Québec smoke
event, we used the Global Environmental Multiscale
Air Quality model (GEM-AQ) which is based on the
global variable-resolution multiscale model devel-
oped by the Meteorological Service of Canada for
operational weather prediction (Côté et al., 1998),
and includes a size-resolved multi-component aero-
sol module (Gong et al., 2003) and an online gas-
phase chemistry module based on the condensed
mechanism of Lurmann et al. (1986). The host
meteorological model can be configured to simulate
the atmosphere over a broad range of scales, from
the global scale down to the meso-g scale. GEM-AQ
was run for the period 6–11 July on a 191� 174
resolution horizontal grid. The grid has a uniform
core of 100� 100 cells where the size resolution is
0:22�. Moving away from the core, the grid size
increases by a constant factor of 1:1. The grid is
centered on 45�N, 75�W, and has 28 hybrid vertical
levels up to 10hPa. High resolution (0:22�) objective
analysis data interpolated onto the model grid were
used to update the meteorological fields every 12h.
The model was run with a time step of 15min.

The emission fluxes of smoke aerosol particles
were generated from the real-time Fire Locating and
Modeling of Burning Emissions (FLAMBÉ) system
(Reid et al., 2004, www.nrlmry.navy.mil/flambe/)
which uses the GOES Wildfire Automated Biomass
Burning Algorithm (WF_ABBA) fire products
(Prins et al., 2001). The WF_ABBA is a real-time
automated dynamic thresholding algorithm which
uses visible, shortwave-infrared ð3:9mmÞ and long-
wave-infrared ð10:7mmÞ data to locate fire pixels
and characterize sub-pixel burning. The net emis-
sion for an individual fire burning in a particular
biome is determined by factoring in the land area
burned, fuel loading, carbon fraction of the fuel,
combustion fraction and emission factor (Reid
et al., 2005). This general methodology is all that
is available for real-time air quality applications.

The smoke particles were assumed to be 6% black
carbon (BC) and 94% organic matter (OM) by mass
(as per Reid et al., 1999; we argue below that the
optical impact of this nominal choice of internal
mass fractions is not large). The particle mass was
distributed across 12 logarithmically spaced radius
size bins between 0.01 and 1mm. Initial size
distributions were taken as unimodal and lognor-
mal. The particles were allowed to grow hygro-
scopically and by coagulation (Gong et al., 2003). In
this simulation, the chemical module was turned off
since detailed organic chemistry is not accounted for
in the model. By this we mean that organic
chemistry processes likely dominate smoke particle
evolution and thus that the application of the
existing chemistry processing package would argu-
ably be irrelevant because the most important
chemical processes would be neglected. This deci-
sion was mitigated by the fact that the optical
outputs of the model are largely dependent on the
bulk properties of the smoke aerosols (number
density and size) and only weakly dependent on
aerosol type and mixtures of aerosol type (cf. the
discussion in Section 4.1). Condensation of inor-
ganic species onto smoke particles was also
neglected, since mass or optical properties are not
likely to be altered in a significant way.

The aerosol optical depths were calculated for
seven wavelengths using a Mie theory code to
compute matrices of size-bin and relative humidity
(RH) dependent extinction cross sections which
were applied off-line to each bin (each size-
discriminated tracer) for all grid cells at all model
time steps. Each bin was optically processed as an
internally and homogeneously mixed size distribu-
tion of OM and BC in volume proportions derived
from the mass fractions given above. The optical
implications of the assumed BC/OM mass composi-
tion as well as the assumption of internal homo-
geneous optical mixing are discussed in the model
uncertainty section below.

The output of the model was compared with
AOD and Ångström exponent (a) values measured
at 10 AERONET/AEROCAN stations across East-
ern Canada (Egbert, Howland and Halifax) and
North-Eastern United States (MDSC, CCNY,
COVE, Norfolk State, SERC, Wallops and GSFC)
(O’Neill et al., 2005). Both parameters were

http://www.nrlmry.navy.mil/flambe/
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Table 1

List of GEM-AQ runs. Run B is the reference run. The variable

input parameters relative to run B are shown in bold

Run Initial rM
(mm)

Initial sM Injection

layer (km)

Emissions

B 0.14 1.7 1–5 6�FFLAMB �E

S1 0.14 2.0 1–5 6�FFLAMB �E

S2 0.14 1.5 1–5 6�FFLAMB �E

R1 0.12 1.7 1–5 6�FFLAMB �E

R2 0.16 1.7 1–5 6�FFLAMB �E

H1 0.14 1.7 0.5–5 6�FFLAMB �E

H2 0.14 1.7 0.5–3.5 6�FFLAMB �E

H3 0.14 1.7 2–6.5 6�FFLAMB �E

E1 0.14 1.7 1–5 5�U
FLAMB �E

E2 0.14 1.7 1–5 7�U
FLAMB �E

Pa 0.14 1.7 1–5 6�FFLAMB �E

aMeteorology updated every 24 h.
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computed at a reference wavelength of 500 nm from
a second order polynomial applied to the 380, 440,
500, 670, 870, 1020 nm AERONET channels (ibid).
Level 1 (non-cloud-screened) data were used in
order to ensure that legitimate smoke data was not
removed by the automated cloud screening process
normally applied to AERONET data (ibid). In lieu
of the cloud screening algorithm, the AOD data set
was carefully monitored for obvious cloud contam-
ination using AVHRR animations and MODIS
imagery, temporal excursions in AOD and a, and
minimum thresholds on a and AOD. A minimum-
signal (voltage) suppression filter was applied in the
Ångström exponent computational chain in order
to reject low count (non-linear signal response)
measurements related to excessively large AOD
values at the smaller wavelengths; such conditions
induce non-linear spectral flattening and obvious
artifacts in a (ibid). During the 6 July–11 July
period, when all stations were determined to be
affected by smoke for at least a few hours, smoke-
event time windows were selected as detailed in
O’Neill et al. (2005).

3. Model evaluation methodology

3.1. Choice of comparative runs

Several runs over a variety of initial conditions
were performed in order to study the sensitivity
of the GEM-AQ model to the input parameters
(Table 1). Run B was chosen as a reference run for
assessing the influence of perturbations from a base
set of run conditions. It corresponded roughly to
what one might characterize as the best run (after a
large number of model evaluation iterations).
However we did not pursue the idea of a best run
any more than was necessary given (a) the
interpretative flexibility associated with what ex-
actly one means by a best run, and (b) given the
uncertainty in performance indicators (associated
with model uncertainty for example).

The range of initial size distributions was
constrained by limitations found in the literature
(Reid et al., 2005). The choice of injection height
ranges was influenced by the back-trajectory ana-
lyses of (Colarco et al., 2004). While these former
parameters could be tuned to improve the model
performance indicators to a certain extent, we could
not produce a reasonable level of agreement
between model and measurements given the emis-
sion flux estimates from the FLAMBÉ system. Use
of the raw FLAMBÉ emissions resulted in AODs
which were significantly smaller than those ob-
served. We note that the location of the fires and the
diurnal variation of the emissions are parametric
inputs which are fairly well constrained by the
satellite input data to the FLAMBÉ system and
thus that there is little variational liberty in these
aspects of the source modelling. Gradual increases
of FLAMBÉ emissions by single-digit factors led to
better agreement with measurements. This trial and
error approach to emissions tuning was the source
of the three emissions factor choices described
immediately below.

Because the initial (source) particle distribution in
the model was assumed to be single-mode lognor-
mal, evaluation tests were performed for variable
geometric mass radii (rM) and geometric standard
deviations (sM), ranging respectively from 0.12 to
0:16mm (runs B, R1, R2) and from 1.5 to 2 (runs B,
S1, S2). Four runs were performed for smoke being
uniformly injected into grid columns between
altitudes of 1–5, 0.5–3.5, 0.5–5, and 2–6.5 km,
respectively (runs B, H1, H2, H3) with source
fluxes being updated every 30min. For three runs
(B, E1, E2) the emission fluxes were taken as 5, 6
and 7 times the emission flux estimated from
FLAMBÉ. One run (P) was performed by updating
the meteorological field every 24 h rather than the
standard 12 h updating frequency.

3.2. Performance indicators

The starting point for quantifying differences in
the observed (xi) and modelled (yi) fields is the root
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mean square difference. For an ensemble of model
runs and an ensemble of measurements, it can be
expressed as a quadrature sum of one positive and
two sign-dependent contributions:

d2RMS ¼ d2s þ d2R% þ d2OFF

¼ ðsy � sxÞ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sysxð1� RÞ

p� �2
þ d2OFF, ð1Þ

where sx and sy are the standard deviation for the
fields xi and yi, respectively, R is the correlation
coefficient, and dOFF ¼ hyi � hxi is the difference
between the means of the two fields. The first term
(ds) expresses the variance difference, while the dR%

term represents an anti-correlation difference (0 for
perfect correlation and maximum for perfect anti-
correlation when R ¼ �1).

The rms difference is a top-down type of
performance indicator which does not allow one
to appreciate the more basic variational mechan-
isms which induce differences between model and
measurements. We found that the rms difference
expressed in terms of the sign-dependent compo-
nents defined above permits one to better judge and
quantify model performance.
4. Model evaluation results

Fig. 1 shows temporal graphs of the modelled
(run B) and measured smoke AODs (500 nm) for all
10 AERONET stations listed above (for measure-
ments acquired during the smoke-event windows).
Some of the largest AODs ever recorded by North
American AERONET instruments were observed
on 6 and 7 July in southeast Canada and the
northeast USA (AOD spikes with values greater
than 4 were observed at a number of sites). Lower
AOD values persisted over the Maryland/Virginia
area on 8 July while a large smoke mass was
advected out to the Atlantic as part of anti-cyclonic
movement about a low pressure zone over Maine
and New Brunswick. Most of this early smoke was
traceable to sources in Northern Québec on 5 July
(Colarco et al., 2004). A separate major plume,
traceable to sources on 7 July and 8 July, invaded
the Maine/Nova Scotia region from 8 July to 10
July (O’Neill et al., 2005). These general events were
captured by the model results of Fig. 1 with what
can be qualitatively described as varying degrees of
success; in this section we attempt to quantify the
model performance in terms of the indicators
discussed above.
An rms component analysis was applied to the
modelled and measured data across the 6 days of
the smoke event in order to analyze the performance
of each model run (where each point of the rms data
ensemble corresponded to a smoke-window average
at a given station).

The quantities R, sx, sy, dOFF and dRMS were
calculated for a and AOD over the ensemble of
station data as a function of all the runs listed in
Table 1. As shown for the AOD in Fig. 2 (bottom
left), R assumes values generally around 0:4 for all
the runs except run H3, where R decreases to about
0:2. The value of R in the case of a is about 0:7 for
all the runs except P, where it decreases down to
0:45. Given that mean AOD and a values during the
smoke events were about 1:8 and 1:3, respectively
(500 nm), it is evident that the dRMS discrepancy is
relatively larger in the case of AOD (for which dRMS

is dominated by dR%). The variance and absolute
amplitude terms play a more significant role in
the case of a since the dR% term is relatively much
less important.

The ds, dR% and dOFF components of the AOD
rms error were primarily sensitive to the height of
the injection layer and to the emission strengths.
For an injection height range of 0.5–5 km (runs H1
and H2), there is a recognizable decrease in ds and
dOFF. This altitude range is somewhat lower than
the 2–6 km range reported by Colarco et al. (2004)
(however their backtrajectories were performed only
for the GSFC station: injection heights for east
coast sites were somewhat lower). The dOFF and ds
components for runs B, E1 and E2 show a clear
emissions-dependent negative to positive bias, while
the anti-correlation term is only moderately influ-
enced by emissions strength.

In the case of a, no strong sensitivity was found
for dR% as a function of initial conditions. In
contrast, ds decreases moderately in (negative)
amplitude, while dOFF decreases from positive to
negative values with increasing sM and rM; this
means that for larger initial distribution sizes the
model evolution tends to underestimate the down-
stream Angstrom exponent (overestimates particle
size). It is noted that the small sM value of run S2 is
more consistent with the few available values of sM
(actually, sVolume) available from the Dubovik
inversion after elimination of the small-mode
anisotropy discussed in O’Neill et al. (2005); in
terms of successive increases in sM (from run S2 to
run B to run S1) one notes that the combined errors
of ds and dOFF go through a minimum somewhere
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Fig. 1. Time series (solid line) of AOD (500 nm) for all stations during the Québec smoke event of July 2002. The solid line represents the

GEM-AQ AOD output while the solid circles represent AERONET data.
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between run S2 and run B. Some ds and dOFF

sensitivity to emission strength (likely to be attri-
butable to coagulation influences) is observable
between the E1 and E2 cases for a. The most readily
apparent a sensitivity to the 24 h meteorology
updates is R, which deteriorates from about 0:7 to
0:45 (from run B to P).
4.1. Meteorological and optical model uncertainty

In this subsection we attempt to provide indica-
tors of meteorological and optical model uncertain-
ties whose impact was not explicitly investigated in
the rms difference study of Fig. 2. While hardly
representing a comprehensive analysis of model
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correlation coefficient (yellow). The letters on the horizontal axis represent the model runs defined in Table 1. AOD results are shown in

the left hand column, while Ångström exponent results are shown in the right hand column.
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uncertainty, these numbers at least give a context to
the significance of the rms differences in that figure.

In order to provide a rough estimate of GEM-AQ
uncertainty due to wind errors, an ensemble of 12
runs was produced by independently perturbing the
two horizontal components of the analyzed wind
fields at each grid point with spatially-uncorrelated
Gaussian noise having zero mean and 2:5m s�1

standard deviation (while keeping all other para-
meters as in run B). The choice of the standard
deviation value was based on the error statistics of
horizontal winds from the Eta Data Assimilation
System, as determined by Lin and Gerbig (2005).
The (AOD and a) dRMS differences between each of
the 12 runs and run B, for the ensemble of all station
data, were not larger than �0:05 for AOD, and not
larger than �0:01 for a. These two values thus give a
meteorological uncertainty context to comparisons
such as those presented in Fig. 2.

In order to assess the optical uncertainty due to
the assumed smoke-aerosol mass composition of
6% BC to 94% OM, we ran a series of Mie
calculations for a variety of related aerosol types.
The AOD and a variations at 500 nm were
investigated for significant differences in aerosol
type (pure sulphates and pure organics as well as
sulphates rather than OM as the 94% component),
different types of internal mixtures of BC and OM,
BC and sulphates and OM and sulphates (both
homogeneously mixed and in a shell configuration)
and different types of external mixtures with the
same three components. The refractive indices for
these calculations were those of Hess et al. (1998),
while the particle size was taken as the initial size
parameters of the reference run B. These computa-
tions, which yielded variations o30% in extinction
coefficients and o10% in a, effectively add an
additional optically-based component to the sto-
chastic, meteorologically-based estimate of model
uncertainty discussed above.

5. Physical interpretation of results

5.1. Aerosol optical depth

Although the gross features of the smoke plume
are generally captured by the model, the AOD
correlation coefficient across the complete six day
period was found to be quite low (R�0:4). This is
more likely a statement about the accuracy and
spatio-temporal resolution of the analyzed meteor-
ological fields since the major aerosol dynamics
phenomenon is clearly advection. A detailed analy-
sis of the model versus the ground-based and
satellite results indicated that the model always
tracked the AOD measurements in a qualitatively
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consistent fashion but that it could lag or lead
measurements and that the temporal scale of a given
modelled event (for example the duration of a
smoke plume) could differ by hours from the
measurements. These temporal differences appeared
to increase with time; the better comparisons were
found for short trajectory times. The predicted
0.1
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comparing GOES animations of a half-hour frame
rate with modelled animations over the daylight
hours of 6 July.

On a purely temporal scale the modelled results
(lower graph of Fig. 3), lead or lag the sunphot-
ometer results by a difference which is significantly
dependent on how one assigns an oftentimes
subjective correspondence between the much more
high frequency sunphotometer data and the low
frequency model data. A similar remark on the
subjective element of the comparisons applies to the
AOD magnitude differences which are of the order
of 100% or less (except for the case where the model
simply failed to capture the broad stable plume
preceding the double peaked plume at CCNY).
Attempts to perform (variable lag) temporal cross
correlations between the model and the sunphoto-
metry results were of limited utility, as one can
readily appreciate given examples such as the
CCNY and SERC comparisons of Fig. 3.

The sign dependent dOFF and ds components of
dRMS clearly implied that the assumed emissions
fluxes in the model were �5–6 times too small (total
emissions of 0.95–1.13Tg of smoke inferred by
eliminating the rms error discrepancy between
modelled and measured AOD compared with the
value of 0.18 Tg estimated from FLAMBÉ). We
also note that our inferred emission flux across the
6-day event was of the same order as the model
based total emission estimate of Colarco et al.
(2004) (1.5 Tg). A review of the inputs to the
FLAMBÉ emission flux estimates indicated that
the ground-based estimates of surface burn area
(from SOPFEU; Société de protection des forêts
contre le feu) were a factor of approximately 2:3
larger than the real-time satellite-based estimates
employed in the former, although Stocks (personal
communication, 2005) also pointed out a tendency
for ground teams to overestimate area burned by
including areas not burned within their perimeter
estimates. Conversely the FLAMBÉ system does
not account for cloud cover, which was at times
substantial during the simulation period. Uncer-
tainties in fuel load, fuel consumed, emission
factors, etc. for individual fires could well account
for a factor of 2 or more (Reid et al., 2005).
However both Lavoue (personal communication,
2005) and Stocks (personal communication, 2005)
indicated that the carbon consumed figure of
approximately 20 t ha�1 employed in the FLAMBÉ
calculations, i.e., the product of the first three
parameters in Eq. (2) of Reid et al. (2005), was
reasonable for Canadian Boreal forests. We note,
on the other hand, that emission factors for such an
extreme event can be many times the more accepted
values (Reid et al., 2005). Potential overestimation
issues which are not included in Reid’s Eq. (2)
would be secondary particle production (Reid et al.,
2005) and non-smoke contributions to the optical
depth measurements. In the latter case, the presence
of a fairly thick low-level polluting layer over the
southern stations (Taubman et al., 2004) would
have contributed to a certain amount of over-
estimation in our inferred emission fluxes (the
pollution AODs being, for example, �25% of the
total AODs on 8 July). If our inferred emission
fluxes are approximately correct, then other factors,
such as the smoke (PM2.5) emission factor of
40 g kg�1 C employed in theFLAMBÉ calculations
would arguably be more likely candidates for
underestimation.

5.2. Ångström exponent

The movement of air masses affects the value of
the AOD by virtue of the number and size of the
transported particles. In our case the low correla-
tion coefficients obtained for the AOD combined
with the higher correlation coefficients of a (�0:7)
are consistent with the idea that the disagreement
between the observed and modelled optical thick-
ness is mainly due to variations in the number
density of transported particles, rather than varia-
tions in their size. The significant correlation of the
modelled versus measured a can be explained given
that the spatio-temporal variations of a included an
important low frequency term which is less depen-
dent on advective meteorology than the variations
of optical thickness.

Fig. 4 shows the variation of a versus trajectory
time for both model and measurements. A single a
point in the comparative data ensemble consisted of
an average across a smoke-event time window at a
given station (one station might be represented by
two or three smoke-event windows). The tendency
of decreasing a (increasing particle size) with
increasing trajectory time was used by O’Neill et
al. (2005) to support arguments for particle growth
due to agglomerative aging effects such as coagula-
tion. This tendency, in terms of the modelled results,
is generally evident in the series of a frames shown
in Fig. 5. Coarsely speaking, smoke from the 5 July
sources ages up to three days and this is the cause of
the (low a) blue regions (Fig. 5) found over the
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Fig. 4. Ångström exponent from GEM-AQ (left) and measurements (right) versus trajectory time (cf. O’Neill et al. (2005) for details on

the computation of trajectory time). The measurements were filtered for small signals (signal less than 50 were excluded for all channels),

and the modelled data (run B of Table 1) have been similarly filtered in terms of an analogous slant path optical depth filter.
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Virginia-area states up until 9 July (i.e. with respect
to the modelled data; as pointed out by O’Neill
et al., 2005, the measured data on 9 July could not
be unambiguously classified as smoke due to the
presence of interspersed cloud). Fresher smoke from
sources on 7 July is the cause of day-old smoke on 8
July at Howland and Halifax, and smoke on 8 July
is the cause of 2-day old smoke on 10 July at Halifax
(represented by high a or reddish/orange regions).
While the statistics of Fig. 4 (for both the modelled
and measured data) are clearly influenced by the
clustering of points for the southern stations seen on
trajectory day 3 (there are, effectively two distinct
populations of points), we would argue that the
essential point of a decrease in a is a significant and
robust trend.

It is noted that the modelled data were filtered
for large AOD in a manner which was similar to
the large-AOD low-signal filtering applied to the
measurements. Closer inspection showed that the
modelled a temporal trend at each station consisted
of high frequency diurnal variations inversely
correlated with large diurnal AOD variations
superimposed on the low frequency trend evident
in Figs. 4 and 5 (variations which clearly result from
the coagulation physics). A high frequency a
modulation which varied inversely with large
AOD was also seen in the raw measured AOD
spectra; however this is precisely the data which
required filtering due to low signal artifacts. While
the modelled a values clearly do not suffer from
low-signal artifacts, the measured data is susceptible
to these artifacts, while at the same time being
subject to coagulative effects. However, it is difficult
if not impossible to discriminate between the
decrease of a with low-signal non-linearities and
the decrease due to large AOD coagulative growth
effects. Accordingly, we judged that the only
reasonable basis of comparison for the production
of Fig. 4 was to filter the modelled data for large
AODs just as the measured data was filtered (the
result of not filtering is a degraded trajectory time
trend in the modelled data which is clearly
attributable to diurnal excursions in a).

We note that if one increases the reference
wavelength at which a is computed (from 500 nm
to a wavelength in the near infrared), fewer large
AOD situations are encountered (less low-signal
filtering is required). However, in this case a
becomes increasingly less dependent on particle size
(Reid et al., 1999; O’Neill et al., 2005) and the
advantages inherent in an increase in the number of
unfiltered points is offset by the decrease in particle
size sensitivity. Finally, in order to ascertain that the
modelled particle growth effects were due to
coagulation and not hygroscopic growth, we re-
computed the 12 bin Mie integrations for 0%
relative humidity. The Ångström exponent versus
trajectory-time graph essentially retained the same
form as the modelled results in Fig. 4 (the dry run
slope was �0:20 with an R2 value of 0:62). This is
not a surprising result, since the average relative
humidities were small at altitudes in the neighbour-
hood of the smoke layer during the smoke window
periods (at 770mb the average station relative
humidities were generally below 30%, with only
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Fig. 5. GEM-AQ animation frames of a taken every 12 h.
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Halifax showing values between 60% and 90%, and
MDSC, CCNY and GSFC showing values greater
than 70% only on 6 July). Relative humidities below
50% only induce small changes in optical extinc-
tion, and only moderate changes are induced for
relative humidities below 70%; the largest humidity-
induced change in a was a decrease of about 0:2 for
Halifax on 8 July.
6. Conclusions

In this paper we attempted to quantify and
characterize the rms differences between model
and measurements for intensive and extensive
optical variables (aerosol optical depth and Ång-
ström exponent). In order to investigate regional
differences between model and measurements, we
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employed a three component analysis of rms
differences. The behaviour of the two absolute
amplitude components of the rms differences (dOFF

and ds) enabled us to infer emission properties
which would otherwise have been masked by the
larger anti-correlation rms difference component
(dR%). The inferred emission fluxes were significantly
higher than those estimated by the original
FLAMBÉ emissions flux model; it was suggested
that this apparent underestimation might be due to
underestimated emission factors in very intense
fires, or other factors not explicitly accounted for
in the emissions model.

The model captured the regional decrease of
the intensive Ångström exponent (increase of
particle size with trajectory time), while the agree-
ment between the model and measurements for
the extensive variable of aerosol optical depth was
marginal, but clearly dependent on the nature of
the spatio-temporal statistical tools which were
employed to characterize model performance. In
establishing the modelled Ångström exponent
trend, the modelled data were filtered in the same
way that the measured data were filtered for
non-linear instrumentation artifacts. This proces-
sing of modelled results was deemed necessary in
order to render these Ångström exponent results
comparable with the measurements; in the latter
case it was difficult if not impossible to discriminate
between measured Ångström exponent trends due
to instrumental artifacts versus trends due to
coagulative effects. Thus, the only choice left was
effectively to process the modelled results in order
to better simulate the measurements.
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