
Research topics[ap_divider color= »#CCCCCC » style= »solid » thickness= »1px » width= »100% » mar_top= »20px » mar_bot= »20px »]My fields of study are mainly geophysics and remote sensing for monitoring natural hazards in a changing environment. My main focus is on the polar regions where my studies attempt to establish the complex links between human activity, climate change and associated natural hazards. I try to see the evolution of these risks in the long term using models by integrating field measurements.
[ap_spacing spacing_height= »15px »]
Email[ap_divider color= »#CCCCCC » style= »solid » thickness= »1px » width= »100% » mar_top= »20px » mar_bot= »20px »]Alexandre.Langlois2@USherbrooke.ca [ap_spacing spacing_height= »15px »]
Research program [ap_divider color= »#CCCCCC » style= »solid » thickness= »1px » width= »100% » mar_top= »20px » mar_bot= »20px »] The main goal of the research program is to better characterize the impact of climate change in northern regions in a geohazard context. The recent craze for the North’s natural resources is creating an unprecedented increase in the need for energy, infrastructure, development, transportation, resource development and services, all of which are highly sensitive to climate change. With melting intimately linked to rising temperatures, there is a pressing need for the development of adaptation approaches in resource and infrastructure management to protect northern ecosystems and ensure the economic, social and cultural well-being of northern peoples. The program has 3 main axes: Characterization of the current impact of climate change in northern regions and the issues with the highest level of geohazard. Characterize geohazards in a context of predicting climate change under specific CO2 increase scenarios. Develop adaptation and planning strategies in accordance with objective 2. using geographic information systems, GIS. Keywords – Cryosphere and climate change; Land and ocean studies; Socio-economic issues and sustainable development; Atmospheric and ocean dynamics; Snow and sea ice; Multi-scale remote sensing (in-situ/airborne/satellite); Geohazard; Modelling and geographic information system (GIS); Project management; Arctic environmental issues.
Current projects [ap_divider color= »#CCCCCC » style= »solid » thickness= »1px » width= »100% » mar_top= »20px » mar_bot= »20px »]
1. Evaluation and improvement of the representation of snow cover in the Canadian Regional Climate models CRCM4 and CRCM5 over northern Québec The main objective of the proposed project is to evaluate and improve the representation of snow cover within the Canadian Regional Climate Model MRCC4 and MRCC5 in northern Quebec. Research activities include an assessment of the characterization of important snow cover processes in MRCC4 and MRCC5 in northern Quebec using new in-situ and remote sensing databases, the development of improved snow cover treatment, and a local climate sensitivity analysis in response to various snow-related processes. Team: Environment Canada, Ouranos, Université de Sherbrooke
2. Sila-illusaq The purpose of this project is therefore to study the interactions between snow, vegetation, permafrost and climate at subarctic and Arctic sites in order to quantitatively understand and predict (1) the future thermal regime of permafrost and (2) future GHG emissions from molten permafrost. Team: Takuvik, GAME, LGGE, CEN-UL, INRS-ÉTÉ, UQTR, Université de Sherbrooke, McGill University
3. Suivi de la fonte des calottes glaciaires du Nord par télédétection This project is part of the Natural Resources Canada’s Carto-Nord project to complete topographic coverage of Canada’s North at a scale of 1:50,000, led by the Centre for Topographic Information in Sherbrooke (CIT), in collaboration with the Canada Centre for Remote Sensing. Team: CIT, Université de Sherbrooke, University of Ottawa, Geological Survey of Canada, Parks Canada, CPSP, Canada Centre for Remote Sensing
4. France-Québec collaboration This project is the continuation of a collaboration that has been ongoing for several years between the Université de Sherbrooke and the Laboratoire de Glaciologie et Géophysique de l’Environnement de Grenoble, France. The main goal is to promote and develop innovative methods for measuring snow cover. Team: Université de Sherbrooke, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE)-CNRS-Université Joseph Fourier (Grenoble, France), Centre d’Étude de la Neige (Grenoble, France)
5. Monitoring of extreme winter weather events in the Arctic This project focuses on the development of methods for monitoring extreme climate events in the Arctic using in-situ and satellite measurements. In particular, the development of microwave methods is used to monitor rain-on-snow, heat waves and extreme precipitation. Team: Environment Canada, LGGE, CEN-UL, Université de Sherbrooke
6. Monitoring and modelling of winter snowmelt in the Arctic The main goal of the project is to better understand the impact of these winter melt events on the properties of the air-soil-ice interface in order to develop semi-empirical methods for satellite detection of winter melt and to model the snow cover under such conditions. Efforts will focus on two fronts: 1) tundra in Nunavik and 2) the Barnes Ice Cap in Baffin Island, Nunavut. Team: Clark University, UQTR, LGGE, Université de Sherbrooke
7. Improving avalanche risk prediction: measurements and modelling The purpose of this project is to improve the risk modeling from the SNOWPACK model using field measurements. State-of-the-art instruments developed over the past 5 years provide essential information for the realization of the project. Team: Parks Canada, University of Calgary, SLF-Davos, Centre d’avalanche de la Haute Gaspésie, Université de Sherbrooke
8. Assessment of food access conditions of the Caribou Peary in the Canadian Arctic Archipelago by modelling Climate change is causing significant changes in snow conditions, affecting food access conditions for some species, including the Caribou Peary. The project therefore aims to model the state of past, present and future snow cover to determine the spatial and temporal evolution of food access conditions. Team: Environment Canada, Université de Sherbrooke [ap_spacing spacing_height= »15px »]
Publications (selected articles) [ap_divider color= »#CCCCCC » style= »solid » thickness= »1px » width= »100% » mar_top= »20px » mar_bot= »20px »]
- Voglimacci-Stephanopoli, J., Wendleder, A., Lantuit, H., Langlois, A., Stettner, S., Schmitt, A., … & Royer, A. (2022). Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation. The Cryosphere, 16(6), 2163-2181.
- Gautier, C., Langlois, A., Sasseville, V., Neave, E., & Johnson, C. A. (2022). Remote sensing, snow modelling, survey data and Indigenous Knowledge show how snow and sea-ice conditions affect Peary caribou (Rangifer tarandus pearyi) distribution and inter-island and island–mainland movements. Polar Research, 41.
- Meloche, J., Langlois, A., Rutter, N., Royer, A., King, J., Walker, B., … & Wilcox, E. J. (2022). Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals. The Cryosphere, 16(1), 87-101.
- Meloche, J., Royer, A., Langlois, A., Rutter, N., & Sasseville, V. (2021). Improvement of microwave emissivity parameterization of frozen Arctic soils using roughness measurements derived from photogrammetry. International Journal of Digital Earth, 14(10), 1380-1396.
- Letcher, T., Vuyovich, C. M., Langlois, A., & Roy, A. (2021). Understanding uncertainty of snow radiative transfer modeling within a mixed deciduous and evergreen forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
- Royer, A., Roy, A., Jutras, S., & Langlois, A. (2021). Performance assessment of electromagnetic wave-based field sensors for SWE monitoring. The Cryosphere Discussions, 1-28.
- Royer, A., Picard, G., Vargel, C., Langlois, A., Gouttevin, I., & Dumont, M. (2021). Improved simulation of Arctic circumpolar land area snow properties and soil temperatures. Frontiers in Earth Science, 9, 515.
- Royer, A., Domine, F., Roy, A., Langlois, A., Marchand, N., & Davesne, G. (2021). New northern snowpack classification linked to vegetation cover on a latitudinal mega-transect across northeastern Canada. Écoscience, 1-18.
- Holtzman, N., Anderegg, L.D.L., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C., Cosh, M., Langlois, A., Lakhankar, T., Tesser, D., Steiner, N., Colliander, A., Roy, A., Konings, A.G., 2020. L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences, submitted, bg-2020-373.
- Meloche, J., Royer, A., Langlois, A., Rutter, N. and Sasseville, V. 2020. Passive microwave emission of frozen tundra soils using roughness measurements derived from photogrammetry. International Journal of Digital Earth, Submitted, TJDE-2020-0130.
- Martineau, C., Langlois, A., Johnson, C.-A., Gouttevin, I. and Neave, E. 2019. Improving Peary caribou presence prediction from the MaxEnt model using spatialized snow simulations: a case study over Bathurst Island Complex, Nunavut, Canada. Arctic, Submitted, June 2020.
- Pomerleau P., Royer, A., Langlois, A., Cliche, P., Courtemanche, B., Madore, J.-B., Picard, G. and Lefebvre, E. (2020) Low cost and compact FMCW 24-GHz radar for snowpack and ice thickness measurements. Sensors, 20(14), doi.org/10.3390/s20143909.
- Vargel V., A. Royer, O. St-Jean-Rondeau, G. Picard, A. Roy, V. Sasseville and A. Langlois (2020) Arctic and Subarctic snow microstructure analysis for microwave brightness temperature simulations. Remote Sensing of Environment, 242, 111754.
- Mavrovic A., J.-B. Madore, A. Langlois, A. Royer, A. Roy (2020). Snow liquid water content measurement using an open-ended coaxial probe (OECP). Cold Regions Science and Technology, 171, 102958
- Langlois, A., A. Royer, B. Montpetit, A. Roy and M. Durocher (2020) Presenting Snow Grain Size and Shape Distributions in Northern Canada Using a New Photographic Device Allowing 2D and 3D Representation of Snow Grains. Frontiers Earth Science, 7:347.
- Roy, A., P. Toose, A. Mavrovic, C. Pappas, A. Royer, C. Derksen, A. Berg, T. Rowlandson, M. El-Amine, W. Helgason, A. Barr, A. Black, A. Langlois and O. Sonnentag (2020) L-Band response to freeze/thaw in a boreal forest stand from ground and tower-based radiometer observations. Remote Sensing of Environment, 237, 111542.
- Levasseur, S., Brown, K., Langlois, A. and McLennan, D. 2020. Measurement of physical properties and stable isotope composition of snow. Atmosphere-Ocean, AO-2020-0027, Submitted.
- Kaluskar, S., Blukacz-Richards, A., Johnson, C.-A., He, Y., Langlois, A., Kim, D.-K. and Arhonditsis, G. 2019. Development of a model ensemble to predict Peary caribou populations in the Canadian Arctic Archipelago. Ecosphere, doi.org/10.1002/ecs2.2976.
- Vargel, C., A. Royer, O. St-Jean rondeau, G. Picard, A. Roy, V. Sasseville and A. Langlois (2019) Arctic and Subarctic snow microstructure analysis for microwave brightness temperature simulations. Remote Sensing of Environment, submitted, RSE-D-19-01117.
- Samarth Kaluskar, Agnes Blukacz-Richards, Cheryl-Ann Johnson, Yuhong He, Alexandre Langlois, Dong-Kyun Kim, George Arhonditsis, 2019. Development of a model ensemble to predict Peary caribou populations in the Canadian Arctic Archipelago. Ecosphere, ECS19-0517.
- Domine, F., G. Picard, S. Morin, M. Barrere, J.-B. Madore and A. Langlois (2019) Major Issues in Simulating some Arctic Snowpack Properties Using Current Detailed Snow Physics Models. Consequences for the Thermal Regime and Water Budget of Permafrost. Journal of Advances in Modeling Earth Systems, 34-44.
- Kramer, D., Meloche, J., Langlois, A., McLennan, D., Gauthier-Barrette, C., Royer, A. and Cliche, P. 2019. Designing a DIY-UAV for arctic research purposes and proving its capabilities by retrieving snow depth via structure-from-motion, Polar Knowledge : Aqhaliat 2019, Polar Knowledge Canada, In Press, May 2019.
- Prince, M., A. Roy, A. Royer and A. Langlois (2018) Timing and Spatial Variability of Fall Soil Freezing in Boreal Forest and its Effect on SMAP L-band Radiometer Measurements. Remote Sensing of Environment, 231.
- King, J., C. Derksen, P. Toose, A. Langlois, C. Larsen, J. Lemmetyinen, P. Marsh, B. Montpetit, A. Roy, N. Rutter and M. Sturm (2018) The influence of snow microstructure on dual-frequency radar measurements in a tundra environment. Remote Sensing of Environment, 215 : 242-254.
- Lyu, H., K.A. McColl, X. Li, C. Deriksen, A. Berg, T.A. Black, E. Euskirchen, M. Loranty, J. Pulliainen, K. Rautiainen, T. Rowlandson, A. Roy, A. Royer, A. Langlois, J. Stephens, H. Liu and D. Entekhabi (2018) Validation of the SMAP freeze/thaw product using categorical triple collocation. Remote sensing of Environment, 205 : 329-337.
- Dolant, C., A. Langlois, L. Brucker, A. Royer, A.R. Roy, B. Montpetit (2018) Meteorological inventory of rain-on-snow events in the Canadian Arctic Archipelago and satellite detection assessment using passive microwave data. Physical Geography, 39(5): 428-444.
- Dolant, C., B. Montpetit, A. Langlois, L. Brucker, O. Zolina, C.A. Johnson, A. Royer and P. Smith (2018) Assessment of the Barren Ground Caribou Die-off During Winter 2015–2016 Using Passive Microwave Observations. Geophysical Research Letters, 4908-4916.
- Madore, J.-B., A. Langlois and K. Côté (2018) Evaluation of the SNOWPACK model’s metamorphism and microstructure in Canada : a case study. Physical Geography, 39:5, 406-427.
- Marchand, N., A. Royer, A., G. Krinner, A. Roy. A. Langlois and C. Vargel (2018) Snow-Covered Soil Temperature Retrieval in Canadian Arctic Permafrost Areas, Using a Land Surface Scheme Informed with Satellite Remote Sensing Data. Remote Sensing, 10(11), 1703.
- Montpetit, B., Royer, A., Roy, A.R., Langlois, A. (2018) In-situ passive microwave emission model parameter ization of sub-arctic frozen organic soils. Remote Sensing of Environment, 205: 112-118.
- Busseau, B.-C., Royer, A., Langlois, A., Barrère, M. And Domine, F. (2017) Analysis of snow-vegetation interactions in the low Arctic – Subarctic transition zone (North Eastern Canada). Physical Geography, 38:2, 159-175.
- Derksen, C., X. Xu, R. Scott Dunbar, A. Colliander, Y. Kim, J. Kimball, A. Black, E. Euskirchen, A. Langlois, M. Loranty, P. Marsh, K. Rautiainen, A. Roy and A. Royer (2017). Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements. Remote Sensing of Environment, 194 : 48-62.
- Côté, K., Madore, J.-B., and Langlois, A. (2017). Uncertainties in the SNOWPACK multilayer snow model for a Canadian avalanche context: sensitivity to climatic forcing data. Physical Geography, 38:2, 124-142.
- Dolant, C., Langlois, A., Brucker, L., Royer, A., Roy, A. and Montpetit, B. (2017). Meteorological inventory of rain-on-snow events in the Canadian Arctic Archipelago and satellite detection assessment using passive microwave data. Physical Geography (online).
- Larue F., A. Royer, D. De Sève, A. Langlois, A. Roy and L. Brucker (2017). Validation of GlobSnow-2 snow water equivalent over Eastern Canada. Remote Sensing of Environment, 194 : 264-277.
- Langlois, A., C.-A. Johnson, B. Montpetit, A. Royer, E.A. Blukacz-Richards, E. Neave, C. Dolant, A. Roy, G. Arhonditsis, D.-K. Kime, S. Kaluskar, L. Brucker (2017) Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave radiometry : A context for Peary caribou habitat in the Canadian Arctic. Remote Sensing of Environment, 189 : 84-95.
- Langlois, A., Royer, A., Montpetit, B., & Roy, A. (2016). Snow grain size and shape distributions in northern Canada. AGUFM, 2016, C51B-0662.
- Roy, A., Royer, A., St-Jean-Rondeau, O., Montpetit, B., Picard, G., Marchand, N., and Langlois, A. (2016) Microwave snow emission modeling uncertainties in boreal and subarctic environments. The Cryosphere, 10 : 623-638.
- Roy, A., Royer, A., Derksen, C., Langlois, A., & Sonnentag, O. (2016, April). Monitoring boreal and arctic freeze/thaw with the first year of SMAP brightness temperatures. In 2016 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad) (pp. 82-84). IEEE.
- Roy, A., Toose, P., Derksen, C., Royer, A., Mavrovic, A., Berg, A., … & Langlois, A. (2016, July). Analysis of L-Band brightness temperatures response to freeze/thaw in two prairie environments from surface-based radiometer measurements. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1667-1670). IEEE.
- Larue, F., Royer, A., De Sève, D., Langlois, A., Roy, A., & Saint-Jean-Rondeau, O. (2016). Simulations of a Canadian snowpack brightness temperatures using SURFEX-Crocus for Snow Water Equivalent (SWE) retrievals. EGUGA, EPSC2016-8576.